unit FFNN;
interface
uses
Windows, Messages, SysUtils, Classes;
type
TNeuralVector = array of Real;
TFFNN = class;
TNLayer=class(TCollectionItem)
private
function GetNeuronCount: Integer;
procedure SetNeuronCount(const Value: Integer);
protected
v: TNeuralVector;
InCenter, InRadius, OutMin, OutWidth: Real;
public
weight, dw: array of array of Real;
i: ^TNeuralVector;
o: TNeuralVector;
constructor Create(Collection: TCollection); override;
procedure CalcOut;
procedure BackProp(var d: TNeuralVector; BPSpeed, Inertion: Real);
function Sigmoid(x: Real): Real;
function Deriv(x: Real): Real;
procedure InitWeight;
procedure SetInputMinMax(x, y: Real);
function GetInputMin: Real;
function GetInputMax: Real;
procedure SetOutputMinMax(x, y: Real);
function GetOutputMin: Real;
function GetOutputMax: Real;
published
property NeuronCount: Integer read GetNeuronCount write SetNeuronCount;
end;
TNLayerClass = class of TNLayer;
TNLayers=class(TCollection)
private
FFFNN: TFFNN;
function GetItem(Index: Integer): TNLayer;
procedure SetItem(Index: Integer; Value: TNLayer);
protected
function GetOwner: TPersistent; override;
procedure Update(Item: TCollectionItem); override;
public
constructor Create(FFNN: TFFNN);
function Add: TNLayer;
function AddItem(Item: TNLayer; Index: Integer): TNLayer;
function Insert(Index: Integer): TNLayer;
property Items[Index: Integer]: TNLayer read GetItem write SetItem; default;
end;
TFFNN = class(TComponent)
private
function GetInputCount: Integer;
procedure SetInputCount(const Value: Integer);
function GetOutputCount: Integer;
procedure SetOutputCount(const Value: Integer);
procedure SetNLayers(const Value: TNLayers);
function GetInputMax: Real;
function GetInputMin: Real;
function GetOutputMax: Real;
function GetOutputMin: Real;
procedure SetInputMax(const Value: Real);
procedure SetInputMin(const Value: Real);
procedure SetOutputMax(const Value: Real);
procedure SetOutputMin(const Value: Real);
protected
FInputMin, FInputMax: Real;
FOutputMin, FOutputMax: Real;
FNLayers: TNLayers;//Hidden layers
FOutLayer: TNLayer;//Output layer
FBPSpeed, FInertion: Real;//Const's in BackProp algorithm
function GetNLayerClass: TNLayerClass; virtual;
function CreateNLayer: TNLayer; virtual;
procedure ConnectLayers;
procedure InitWeights;
function GetInputLayer: TNLayer;
function GetOutputLayer: TNLayer;
public
Input, Output: TNeuralVector;//Use this to access In and Out. Don't use [0]
DesiredOutput: TNeuralVector;//Set this prior to calling BackProp
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;
procedure ClearLayers;
procedure SaveToFile(FileName: string);//Save entire network
procedure LoadFromFile(FileName: string);//Load it
function AddLayer: TNLayer; overload;
procedure CalcOut;
function BackProp: Real; overload;
function GetAvgError: Real;
function GetMaxError: Real;
published
property InputCount: Integer read GetInputCount write SetInputCount;
property OutputCount: Integer read GetOutputCount write SetOutputCount;
property InputMin: Real read GetInputMin write SetInputMin;
property InputMax: Real read GetInputMax write SetInputMax;
property OutputMin: Real read GetOutputMin write SetOutputMin;
property OutputMax: Real read GetOutputMax write SetOutputMax;
property NLayers: TNLayers read FNLayers write SetNLayers;
property BPSpeed: Real read FBPSpeed write FBPSpeed;
property Inertion: Real read FInertion write FInertion;
end;
procedure Register;
implementation
{$R *.dcr}
procedure Register;
begin
RegisterComponents('Dataland', [TFFNN]);
end;
constructor TNLayer.Create(Collection: TCollection);
begin
NeuronCount:=3;
InCenter:=0;
InRadius:=1;
OutMin:=-1;
OutWidth:=2;
inherited;//Update will be called in here so we have to set properties before.
end;
procedure TNLayer.SetInputMinMax(x, y: Real);
begin
InCenter:=(x+y)/2;
InRadius:=(y-x)/2;
end;
function TNLayer.GetInputMin: Real;
begin
Result:=InCenter-InRadius;
end;
function TNLayer.GetInputMax: Real;
begin
Result:=InCenter+InRadius;
end;
procedure TNLayer.SetOutputMinMax(x, y: Real);
begin
OutMin:=x;
OutWidth:=y-x;
end;
function TNLayer.GetOutputMin: Real;
begin
Result:=OutMin;
end;
function TNLayer.GetOutputMax: Real;
begin
Result:=OutMin+OutWidth;
end;
procedure TNLayer.CalcOut;
var
j,k: Integer;
begin
for j:=1 to Length(o)-1 do begin
v[j]:=0;
for k:=0 to Length(i^)-1 do
v[j]:=v[j]+weight[j,k]*i^[k];
o[j]:=Sigmoid(v[j]);
end;
end;
procedure TNLayer.BackProp (var d: TNeuralVector; BPSpeed, Inertion: Real);
var
j,k: Integer;
begin
for j:=1 to Length(o)-1 do
d[j]:=d[j]*Deriv(v[j]);
for j:=1 to Length(o)-1 do
for k:=0 to Length(i^)-1 do begin
dw[j,k]:=dw[j,k]*Inertion + BPSpeed*d[j]*i^[k];
weight[j,k]:=weight[j,k]+dw[j,k];
end;
for j:=2 to Length(o)-1 do
d[1]:=d[1]+d[j];
SetLength(d, Length(i^));
for j:=2 to Length(d)-1 do
d[j]:=d[1];
end;
procedure TNLayer.InitWeight;
var
j,k: Integer;
begin
SetLength(weight, Length(o), Length(i^));
SetLength(dw, Length(o), Length(i^));
for j:=1 to Length(o)-1 do
for k:=0 to Length(i^)-1 do begin
weight[j,k]:=InRadius*(2*(2.4/(Length(i^)-1))*random(1000)/1000-1);
dw[j,k]:=0;
end;
end;
function TNLayer.Deriv(x: Real): Real;
begin
result:=(exp(-(x-InCenter)/InRadius)*OutWidth/InRadius)/sqr(1+exp(-(x-InCenter)/InRadius));
end;
function TNLayer.Sigmoid(x: Real): Real;
begin
result:=OutWidth/(1+exp(-(x-InCenter)/InRadius))+OutMin
end;
function TNLayers.Add: TNLayer;
begin
Result := TNLayer(inherited Add);
end;
function TNLayers.AddItem(Item: TNLayer;
Index: Integer): TNLayer;
begin
if Item = nil then
Result := FFFNN.CreateNLayer
else
begin
Result := Item;
if Assigned(Item) then
begin
Result.Collection := Self;
if Index < 0 then
Index := Count - 1;
Result.Index := Index;
end;
end;
end;
function TNLayers.Insert(Index: Integer): TNLayer;
begin
Result := AddItem(nil, Index);
end;
function TFFNN.GetNLayerClass: TNLayerClass;
begin
Result:=TNLayer;
end;
constructor TNLayers.Create(FFNN: TFFNN);
begin
if FFNN <> nil then
inherited Create(FFNN.GetNLayerClass)
else
inherited Create(TNLayer);
FFFNN := FFNN;
end;
procedure TNLayers.Update(Item: TCollectionItem);
begin
inherited;
FFFNN.ConnectLayers;
FFFNN.InitWeights;
end;
procedure TFFNN.SetNLayers(const Value: TNLayers);
begin
FNLayers.Assign( Value );
end;
{ TNLayers }
function TNLayers.GetItem(Index: Integer): TNLayer;
begin
Result := TNLayer(inherited GetItem(Index));
end;
function TNLayers.GetOwner: TPersistent;
begin
Result := FFFNN;
end;
procedure TNLayers.SetItem(Index: Integer; Value: TNLayer);
begin
inherited SetItem(Index, Value);
end;
function TFFNN.GetInputCount: Integer;
begin
Result:=Length(Input)-1;
end;
procedure TFFNN.SetInputCount(const Value: Integer);
begin
SetLength(Input, Value+1);
end;
constructor TFFNN.Create(AOwner: TComponent);
begin
Inherited;
InputCount:=2;
Input[0]:=-1;
OutputCount:=1;
Output[0]:=-1;
FBPSpeed:=0.1;
FInertion:=0.1;
FNLayers:=TNLayers.Create( Self );
FOutLayer:=TNLayer.Create(nil);
ConnectLayers;
randomize;
end;
destructor TFFNN.Destroy;
begin
ClearLayers;
FNLayers.Free;
FOutLayer.Free;
Inherited Destroy;
end;
procedure TFFNN.ClearLayers;
begin
NLayers.Clear;
end;
procedure TFFNN.SaveToFile(FileName: string);
var
f: textfile;
i,j,k: Integer;
begin
AssignFile(f, FileName);
Rewrite(f);
writeln(f, 'Feed forward neural network file. v2.0.');
writeln(f, 'Do NOT edit this file!');
writeln(f, InputCount, ' ', InputMin, ' ', InputMax);
writeln(f, OutputCount, ' ', OutputMin, ' ', OutputMax);
writeln(f, FNLayers.Count);
for i:=0 to FNLayers.Count-1
do write(f, NLayers[i].NeuronCount, ' ');
writeln(f, FOutLayer.NeuronCount);
for i:=0 to FNLayers.Count-1 do with FNLayers[i] do begin
for j:=1 to Length(o)-1 do begin
for k:=0 to Length(i^)-1 do
write(f, weight[j,k], ' ');
writeln(f);
end;
end;
with FOutLayer do begin
for j:=1 to Length(o)-1 do begin
for k:=0 to Length(i^)-1 do
write(f, weight[j,k], ' ');
writeln(f);
end;
end;
CloseFile(f);
end;
procedure TFFNN.LoadFromFile(FileName: string);
var
f: textfile;
i,j,k, n: Integer;
a, b: Real;
begin
AssignFile(f, FileName);
Reset(f);
ClearLayers;
readln(f);
readln(f);
readln(f, i, a, b);
InputCount:=i;
InputMin:=a;
InputMax:=b;
readln(f, i, a, b);
OutputCount:=i;
OutputMin:=a;
OutputMax:=b;
readln(f, n);
for i:=0 to n-1 do begin
NLayers.Add;
read(f, j);
NLayers[i].NeuronCount:=j;
end;
readln(f, j);
FOutLayer.NeuronCount:=j;
ConnectLayers;
InitWeights;
for i:=0 to FNLayers.Count-1 do with FNLayers[i] do begin
for j:=1 to Length(o)-1 do begin
for k:=0 to Length(i^)-1 do begin
read(f, a);
weight[j,k]:=a;
end;
readln(f);
end;
end;
with FOutLayer do begin
for j:=1 to Length(o)-1 do begin
for k:=0 to Length(i^)-1 do begin
read(f, a);
weight[j,k]:=a;
end;
readln(f);
end;
end;
CloseFile(f);
end;
procedure TFFNN.CalcOut;
var
i, j: Integer;
begin
for j:=0 to FNLayers.Count-1 do
FNLayers.Items[j].CalcOut;
FOutLayer.CalcOut;
for i:=1 to Length(Output)-1 do
Output[i]:=FOutLayer.o[i];
end;
procedure TFFNN.ConnectLayers;
var
i: Integer;
begin
GetInputLayer.SetInputMinMax(FInputMin, FInputMax);
GetOutputLayer.SetOutputMinMax(FOutputMin, FOutputMax);
GetInputLayer.i:=@Input;
if NLayers.Count>0 then begin
for i:=0 to NLayers.Count-2 do begin
NLayers.Items[i+1].i:=@(NLayers.Items[i].o);
end;
FOutLayer.i:=@(NLayers.Items[NLayers.Count-1].o);
end;
end;
function TFFNN.GetInputLayer: TNLayer;
begin
if NLayers.Count>0
then Result:=NLayers.Items[0]
else Result:=FOutLayer;
end;
function TFFNN.GetOutputLayer: TNLayer;
begin
Result:=FOutLayer;
end;
function TFFNN.GetInputMax: Real;
begin
Result:=FInputMax;
end;
function TFFNN.GetInputMin: Real;
begin
Result:=FInputMin;
end;
function TFFNN.GetOutputMax: Real;
begin
Result:=FOutputMax;
end;
function TFFNN.GetOutputMin: Real;
begin
Result:=FOutputMin;
end;
procedure TFFNN.SetInputMax(const Value: Real);
begin
FInputMax:=Value;
GetInputLayer.SetInputMinMax(GetInputLayer.GetInputMin, Value);
end;
procedure TFFNN.SetInputMin(const Value: Real);
begin
FInputMin:=Value;
GetInputLayer.SetInputMinMax(Value, GetInputLayer.GetInputMax);
end;
procedure TFFNN.SetOutputMax(const Value: Real);
begin
FOutputMax:=Value;
GetOutputLayer.SetOutputMinMax(GetOutputLayer.GetOutputMin, Value);
end;
procedure TFFNN.SetOutputMin(const Value: Real);
begin
FOutputMin:=Value;
GetOutputLayer.SetOutputMinMax(Value, GetOutputLayer.GetOutputMax);
end;
function TFFNN.CreateNLayer: TNLayer;
var
LClass: TNLayerClass;
begin
LClass := GetNLayerClass;
{
if Assigned(FOnCreateNLayerClass) then
FOnCreateNLayerClass(Self, LClass);
}
Result := LClass.Create(NLayers);
end;
procedure TFFNN.InitWeights;
var
i: Integer;
begin
for i:=0 to NLayers.Count-1 do begin
NLayers.Items[i].InitWeight;
end;
FOutLayer.InitWeight;
end;
function TFFNN.GetOutputCount: Integer;
begin
Result:=Length(Output)-1;
end;
procedure TFFNN.SetOutputCount(const Value: Integer);
begin
SetLength(Output, Value+1);
SetLength(DesiredOutput, Value+1);
if FOutLayer<> nil then FOutLayer.NeuronCount:=Value;//!!!
if Length(Output)>0
then Output[0]:=-1;
end;
function TNLayer.GetNeuronCount: Integer;
begin
Result:=Length(o)-1;
end;
procedure TNLayer.SetNeuronCount(const Value: Integer);
begin
SetLength(o, Value+1);
o[0]:=-1;
SetLength(v, Value+1);
end;
function TFFNN.AddLayer: TNLayer;
var
NLayer: TNLayer;
begin
NLayer:=NLayers.Add;
ConnectLayers;
NLayer.InitWeight;
Result:=NLayer;
end;
function TFFNN.BackProp: Real;
var
j: Integer;
d: TNeuralVector;
begin
CalcOut;
SetLength(d, Length(Output));
for j:=1 to Length(Output)-1 do
d[j]:=DesiredOutput[j]-Output[j];
FOutLayer.BackProp(d, FBPSpeed, FInertion);
for j:=FNLayers.Count-1 downto 0 do
FNLayers.Items[j].BackProp(d, FBPSpeed, FInertion);
Result:=GetMaxError;
end;
function TFFNN.GetAvgError: Real;
var
i: Integer;
begin
Result:=0;
for i:=1 to High(DesiredOutput) do
Result:=Result+sqr(DesiredOutput[i]-Output[i]);
Result:=sqrt(Result);
end;
function TFFNN.GetMaxError: Real;
var
i: Integer;
begin
Result:=0;
for i:=1 to High(DesiredOutput) do
if Abs(DesiredOutput[i]-Output[i]) > Result
then Result:=Abs(DesiredOutput[i]-Output[i]);
end;
end.
Profil
Man ahabba lillahi faqod istakmalal iimaan
BackPropogation FeedForward
Label:
Jaringan Syaraf Tiruan
Diposting oleh
Unknown
Jumat, 30 Maret 2012
Langganan:
Posting Komentar (Atom)
Search this blog
Tentangku,,,
Popular Posts
Labels
Blog Archive
- Mei 2013 (3)
- April 2013 (1)
- Maret 2013 (1)
- Oktober 2012 (1)
- Mei 2012 (1)
- April 2012 (2)
- Maret 2012 (9)
- Januari 2012 (7)
- Desember 2011 (13)
- Maret 2010 (1)
- Februari 2010 (1)
- Januari 2010 (2)
- April 2009 (8)
- Februari 2009 (6)
Statistik
Pengikut
Diberdayakan oleh Blogger.
Aslm...
Mbak ini komponen ya?? ada procedure register nya...
atau memang program JST??
mohon penjelasan, masi Newbie... hehe...